#1- Identify a problem
#2- Collect info on your problem
#3- Make a hypothesis
#4- Design an experiment to test your hypothesis
#5- Collect data and observations
#6- Accept or reject your hypothesis
#7- Record results
Hope this helps.
<span>The average molar bond enthalpy of the carbon-hydrogen bond in a CH4 molecule is 416 KJ/mol.
(+716.7 + (4 x 218) - (- 74.6) ) / 4
= + 1663.3 / 4
= 416</span>
Answer:
An electron is around 1800 times smaller than a proton
Explanation:
Answer:
- The answer is the concentration of an NaOH = 1.6 M
Explanation:
The most common way to solve this kind of problem is to use the formula
In your problem,
For NaOH
C₁ =?? v₁= 78.0 mL = 0.078 L
For H₂SO₄
C₁ =1.25 M v₁= 50.0 mL = 0.05 L
but you must note that for the reaction of NaOH with H₂SO₄
2 mol of NaOH raect with 1 mol H₂SO₄
So, by applying in above formula
- (C₁ * 0.078 L) = (2* 1.25 M * 0.05 L)
- C₁ = (2* 1.25 M * 0.05 L) / (0.078 L) = 1.6 M
<u>So, the answer is the concentration of an NaOH = 1.6 M</u>
Answer:
ΔTb = 0.66 C
Explanation:
Given
Mass of KBr = 185 g
Mass of water = 1.2 kg
Kb = 0.51 C/m
Explanation:
The change in boiling point (ΔTb) is given by the product of molality (m) of the solution and the boiling point constant (Kb)


[tex]\Delta T_{b}= 0.51 C/m * 1.296 m = 0.66 C[\tex]