A stationary charge is located between the poles of a horseshoe magnet. The magnetic force exerted by the charge is zero.
<h3>What is charge?</h3>
Charge is the physical property of matter which cause a particle to attract or repel when placed in its field.
A stationary charged particle does not interact with a static magnetic field. A charge placed in a magnetic field experiences a magnetic force. There will be no magnetic force acting on a stationary charge. The charge must be moving in order to have magnetic force on it.
Thus, the magnetic force exerted by the charge is zero.
Learn more about charge.
brainly.com/question/19886264
#SPJ4
Space debris that enters earths atmosphere
Answer is A) Fulcrum
The fixed point that a lever rotates around is called the fulcrum.
Answer:
a) V_f = 25.514 m/s
b) Q =53.46 degrees CCW from + x-axis
Explanation:
Given:
- Initial speed V_i = 20.5 j m/s
- Acceleration a = 0.31 i m/s^2
- Time duration for acceleration t = 49.0 s
Find:
(a) What is the magnitude of the satellite's velocity when the thruster turns off?
(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis.
Solution:
- We can apply the kinematic equation of motion for our problem assuming a constant acceleration as given:
V_f = V_i + a*t
V_f = 20.5 j + 0.31 i *49
V_f = 20.5 j + 15.19 i
- The magnitude of the velocity vector is given by:
V_f = sqrt ( 20.5^2 + 15.19^2)
V_f = sqrt(650.9861)
V_f = 25.514 m/s
- The direction of the velocity vector can be computed by using x and y components of velocity found above:
tan(Q) = (V_y / V_x)
Q = arctan (20.5 / 15.19)
Q =53.46 degrees
- The velocity vector is at angle @ 53.46 degrees CCW from the positive x-axis.