Answer:
the maximum height reached by the marble is 11.84 m.
Explanation:
Given;
mass of the marble, m = 0.02 kg
extension of the string, x = 0.08 m
force applied to the string, F = 58 N
Apply the principle of conservation of energy;
elastic potential energy = gravitational potential energy
¹/₂fx = mgh

Therefore, the maximum height reached by the marble is 11.84 m.
11/23/2012 - 2.2 mag, 5.0mi depth 1.0875 mi from <span>Gloucester Township, NJ
</span>
1. Frequency: 
The frequency of a light wave is given by:

where
is the speed of light
is the wavelength of the wave
In this problem, we have light with wavelength

Substituting into the equation, we find the frequency:

2. Period: 
The period of a wave is equal to the reciprocal of the frequency:

The frequency of this light wave is
(found in the previous exercise), so the period is:

The first thing that needs to be done is to find everything in the same units. 12 hours becomes 43200 seconds. Then find the distance traveled by light in that amount of time. Using the formula v=d/s, manipulate it so it looks like d=v*s. Then plug in the values: d=(3x10^8)*43200, d=1.3x10^13m. But you need to find this in kilometers. To do this, simply divide your answer by one thousand. Thus, a laser beam would travel 1.3x10^10 kilometers in 12 hours.