Answer:
Explanation:
Given equation is ,
x =t + 2 t³ ,
dx/dt = velocity ( v ) = 1 + 6 t²
a) kinetic energy = 1/2 m v² = .5 x 4 ( 1 + 6 t² )² = 2 ( 1 + 6 t²)²
b ) Acceleration = dv /dt = 12 t .
force( F ) = mass x acceleration = 4 x 12 t = 48 t
Power = force x velocity = 48 t x ( 1 + 6 t²). = 48 t + 288 t³ )
work done = ∫ F dx =∫ 48 t x( 1 + 6t² )dt ; = [48t²/2 + 48 x 6 x t³ /3 = 24 t² + 96 t³ )]₀² = 864 J
Answer:
The horizontal component of her velocity is approximately 1.389 m/s
The vertical component of her velocity is approximately 7.878 m/s
Explanation:
The given question parameters are;
The initial velocity with which Margaret leaps, v = 8.0 m/s
The angle to the horizontal with which she jumps, θ = 80° to the horizontal
The horizontal component of her velocity, vₓ = v × cos(θ)
∴ vₓ = 8.0 × cos(80°) ≈ 1.389
The horizontal component of her velocity, vₓ ≈ 1.389 m/s
The vertical component of her velocity,
= v × sin(θ)
∴
= 8.0 × sin(80°) ≈ 7.878
The vertical component of her velocity,
≈ 7.878 m/s.
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
Answer: potential to kinetic/mechanical
Explanation: