1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
3 years ago
15

1

Mathematics
1 answer:
kvv77 [185]3 years ago
3 0

Answer:

45.16%

Step-by-step explanation:

31 students is 100%

so, 14x100/31=45.16

You might be interested in
6( 5-8x) +12= -54
UkoKoshka [18]
<span>6( 5-8x) +12= -54 
30-48x+12=-54 this comes from distributing(multiplying) 6x5 and 6 times -8x
30+12-48x=-54 you have to add the coefficients 30+12
42-48x=-54  
-42        -42 
-----------------------
-48x=-96 divide by -48
x=2</span>
5 0
3 years ago
Read 2 more answers
PLEASE SOMEINE HELP ME WITH THIS ASAP
Tems11 [23]

Answer:

Sure, Help you with what?

Step-by-step explanation:

Let me know :)

Have an AWESOME Friday <3

7 0
3 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Juanita is 10 years old her father is 4 times older than her when Juanita is 30 how old will her father be explain how you got y
almond37 [142]

answer: 60

age difference is 30 years

10x4=40

40-10=30

when she is 30 he will be 60 because 30(her age) + 30 (age difference) = 60

8 0
4 years ago
A herd of 52 horses has 12 white and some black horses.what is the ratio of white to black horses ?
bagirrra123 [75]

So we have 52 horses. We know that 12 are white, so:

W : B - 12: x, where x is the unknown amount of horses.

52 - the twelve white horses = 40 other horses.

This means that there are 40 black horses, so the ration of W:B is 12:40. We can simplify this ratio.

The highest common factor of both numbers is 4, so the ratio can be divided by four, giving 3:10.

Therefore the ratio is 3:10.

Hope I helped!

8 0
3 years ago
Other questions:
  • What is the solution to the system of equations 2x-5y=-5 and x+2y=11?
    12·1 answer
  • 7/6 - 4/3n = -3/2n + 2(n + 3/2)
    8·1 answer
  • * offering lots of points. help! *
    10·1 answer
  • Start at 200. creat a that multiples each number by two stop when you have 5 numbers.
    13·2 answers
  • For triangle ABC side a=18, Angle C = 90degrees and side b= 24 find c to the nearest hole number
    11·1 answer
  • What is the solution to the system of equations? y=-x+5 y=x-1
    9·1 answer
  • Find the volume, in cubic inches, of a right rectangular prism with the measurements below.
    12·1 answer
  • Lin runs 5 laps around a track in 6 minutes, if Lin runs 21 laps at the same rate, how long does it take her?​
    5·1 answer
  • Write the equation of the line that passes through the points (-2,-5)(−2,−5) and (8,-8)(8,−8). Put your answer in fully reduced
    8·1 answer
  • !!!30 POINTS AND BRAINLIEST!!!PLEASE HELP ASAP!!!THIS IS MY 5th TIME POSTING IT!!!!
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!