Answer:
58g
Explanation:
In order to solve this problem, you must take a look at the solubility graph for potassium nitrate.
Now, the solubility graph shows you how much solute can be dissolved per 100g of water in order to make an unsaturated, a saturated, or a supersaturated solution.
You're looking to make a saturated potassium nitrate solution using
50g of water at 60∘C. Your starting point will be to determine how much potassium nitrate can be dissolved in 100g of water at that temperature in order to have a saturated solution.
As you can see, the curve itself represents saturation.
If you draw a vertical line that corresponds to 60∘C and extend it until it intersects the curve, then draw a horizontal line that connects to the vertical axis, you will find that potassium has a solubility of about
115g per 100g of water. Your answer is 58g of potassium nitrate
Answer:
Explanation:
To be accurate, it must be able to make measurements that are close to the actual value.
Answer:
No change to the cation Add -ide to the anion
Question 1 and .2
Explanation:
Answer:
Cu + 4HNO3 ---> Cu(NO3)2 + 2NO2 + 2H2O.
Explanation:
Balancing:
Cu + 4HNO3 ---> Cu(NO3)2 + 2 NO2 + 2H2O.
Data Given:
Initial Volume = V₁ = 36.7 L
Initial Pressure = P₁ = 145 kPa
Initial Temperature = T₁ = 65 °C + 273 = 338 K
Final Volume = V₂ = ?
Final Pressure = P₂ = 101.325 kPa (Standard Pressure)
Final Temperature = T₂ = 273 K (Standard Temperature)
Formula used:
As number of moles are constant, so Ideal Gas equation in following form is used,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / T₁ P₂
Putting Values,
V₂ = (145 kPa × 36.7 L × 338 K) ÷ (273 K × 101.325 kPa)
V₂ = 1798667 ÷ 27661.25
V₂ = 65.02 L