(5x + 3)(5x – 3)
(7x + 4)(7x + 4)
(x – 9)(x – 9)
(–3x – 6)(–3x + 6)
Answer:
B
Step-by-step explanation:
Answer:
tan θ = (√13)/3
Step-by-step explanation:
cosθ = 3/√22 = adj/hyp
third side of triangle has dimension
c = √((√22)² - 3²) = √13
tan θ = opp/adj = (√13)/3
Answer:
The correct option is (A).
Step-by-step explanation:
If the reduced row echelon form of the coefficient matrix of a linear system of equations in four different variables has a pivot, i.e. 1, in each column, then the reduced row echelon form of the coefficient matrix is say A is an identity matrix, here I₄, since there are 4 variables.
![\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%260%260%5C%5C0%261%260%260%5C%5C0%260%261%260%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
Then the corresponding augmented matrix [ A|B] , where the matrix is the representation of the linear system is AX = B, must be:
![\left[\begin{array}{ccccc}1&0&0&0&a\\0&1&0&0&b\\0&0&1&0&c\\0&0&0&1&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%260%26a%5C%5C0%261%260%260%26b%5C%5C0%260%261%260%26c%5C%5C0%260%260%261%26d%5Cend%7Barray%7D%5Cright%5D)
Now the given linear system is consistent as the right most column of the augmented matrix is a linear combination of the columns of A as the reduced row echelon form of A has a pivot in each column.
Thus, the correct option is (A).
Answer:
15.74% of women are between 65.5 inches and 68.5 inches.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What percentage of women are between 65.5 inches and 68.5 inches?
This percentage is the pvalue of Z when X = 68.5 subtracted by the pvalue of Z when X = 65.5.
X = 68.5



has a pvalue of 0.9987
X = 65.5



has a pvalue of 0.8413
So 0.9987 - 0.8413 = 0.1574 = 15.74% of women are between 65.5 inches and 68.5 inches.