28mi/1 hr = 28 mi/60 min = 1 mi/(60/28) min =
28 mi/hr = 28 mi/60 min since there are 60 min in 1 hr
1 mi/(60/28) min since you divide top and bottom of 28/60 by 28 to get
1 mi/(60/28) min = 1mi/(15/7) min = 1 mi/ 2 1/7 min
Using parenthesis, we want to add 25 and 9 first before dividing.
170/ (25+9)
Check the picture below.
a)
so the perimeter will include "part" of the circumference of the green circle, and it will include "part" of the red encircled section, plus the endpoints where the pathway ends.
the endpoints, are just 2 meters long, as you can see 2+15+2 is 19, or the radius of the "outer radius".
let's find the circumference of the green circle, and then subtract the arc of that sector that's not part of the perimeter.
and then let's get the circumference of the red encircled section, and also subtract the arc of that sector, and then we add the endpoints and that's the perimeter.


b)
we do about the same here as well, we get the full area of the red encircled area, and then subtract the sector with 135°, and then subtract the sector of the green circle that is 360° - 135°, or 225°, the part that wasn't included in the previous subtraction.

Answer: There is not a good prediction for the height of the tree when it is 100 years old because the prediction given by the trend line produced by the regression calculator probably is not valid that far in the future.
Step-by-step explanation:
Years since tree was planted (x) - - - - height (y)
2 - - - - 17
3 - - - - 25
5 - - - 42
6 - - - - 47
7 - - - 54
9 - - - 69
Using a regression calculator :
The height of tree can be modeled by the equation : ŷ = 7.36X + 3.08
With y being the predicted variable; 7.36 being the slope and 3.08 as the intercept.
X is the independent variable which is used in calculating the value of y.
Predicted height when years since tree was planted(x) = 100
ŷ = 7.36X + 3.08
ŷ = 7.36(100) + 3.08
y = 736 + 3.08
y = 739.08
Forward prediction of 100 years produced by the trendline would probably give an invalid value because the trendline only models a range of 9 years prediction. However, a linear regression equation isn't the best for making prediction that far in into the future.
Answer:
The answer can be explained here: theraleighregister.com/the-diagram-shows-the-width-and-area-of-a-rectangl.html
Step-by-step explanation: