used in the manufacturing of glass, detergents chemicals and other industrial products.
Answer : (b) The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The general reaction is:

The general rate law expression for the reaction is:
![\text{Rate}=k[A]^a[B]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BA%5D%5Ea%5BB%5D%5Eb)
where,
a = order with respect to A
b = order with respect to B
R = rate law
k = rate constant
and
= concentration of A and B reactant
Now we have to determine the rate law for the given reaction.
The balanced equations will be:

In this reaction,
and
are the reactants.
The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D%5E1)
or,
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)
Answer: so the answer would likely be
Explanation:
Answer: The rates of production of
is
mol/Ls and
is 0.0195 mol/Ls.
Explanation:

Rate with respect to reactants is shown by negative sign as the reactants are decreasing with time and Rate with respect to products is shown by positive sign as the products are increasing with time.
Rate of the reaction=![-\frac{1}{4}\frac{[d[PH_3]}{dt}=\frac{[d[P_4]}{dt}=\frac{1}{6}\frac{[d[H_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5Bd%5BPH_3%5D%7D%7Bdt%7D%3D%5Cfrac%7B%5Bd%5BP_4%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5Bd%5BH_2%5D%7D%7Bdt%7D)
Rate of decomposition of 
Rate of production of 
Rate of production of 