The link above is a hacker
An individual is hospitalized and the initial blood work indicates high levels of
in the blood and a pH of 7. 47. This would indicate the individual probably has compensated respiratory acidosis.
A chronic illness usually leads to compensated respiratory acidosis because the kidneys have time to adjust to the delayed onset. Even if the
is elevated in a compensated respiratory acidosis, the pH is within the usual range.
The kidneys counteract a respiratory acidosis by increasing the amount of
that tubular cells reabsorb from the tubular fluid, the amount of
that collecting duct cells secrete while also producing
, and the amount of
buffer that is formed through ammoniagenesis.
Respiratory acidosis is frequently brought on by hypoventilation as a result of: breathing depression , paralysis of the respiratory muscles, diseases of the chest wall , abnormalities of the lung parenchyma and abdominal squeezing.
Learn more about Respiratory acidosis here;
brainly.com/question/9694207
#SPJ4
Answer:
[Cl2] equilibrium = 0.0089 M
Explanation:
<u>Given:</u>
[SbCl5] = 0 M
[SbCl3] = [Cl2] = 0.0546 M
Kc = 1.7*10^-3
<u>To determine:</u>
The equilibrium concentration of Cl2
<u>Calculation:</u>
Set-up an ICE table for the given reaction:

I 0 0.0546 0.0546
C +x -x -x
E x (0.0546-x) (0.0546-x)
![Kc = \frac{[SbCl3][Cl2]}{[SbCl5]}\\\\1.7*10^{-3} =\frac{(0.0546-x)^{2} }{x} \\\\x = 0.0457 M](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BSbCl3%5D%5BCl2%5D%7D%7B%5BSbCl5%5D%7D%5C%5C%5C%5C1.7%2A10%5E%7B-3%7D%20%3D%5Cfrac%7B%280.0546-x%29%5E%7B2%7D%20%7D%7Bx%7D%20%5C%5C%5C%5Cx%20%3D%200.0457%20M)
The equilibrium concentration of Cl2 is:
= 0.0546-x = 0.0546-0.0457 = 0.0089 M
To change only one variable which is very important than to test the experiment to match the hypothesis again, I think. It’s been a while since I was on that lesson♀️
<h3>The density of H₂ = 0.033 g/L</h3><h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm , N/m²
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K (P= atm, v= liter),or 8,314 J/mol K (P=Pa or N/m², v= m³)
T = temperature, Kelvin
n = N / No
n = mole
No = Avogadro number (6.02.10²³)
n = m / MW
m = mass
MW = molecular weight
For density , can be formulated :

P = 327 mmHg = 0,430263 atm
R = 0.082 L.atm / mol K
T = 48 ºC = 321.15 K
MW of H₂ = 2.015 g/mol
The density :
