Answer: The average rate of change is 6.First, plug in each value of <em>t</em> into the function, v(t) to find there coordinate pairs.
v(2) = (2)^2 - (2) + 10
v(2) = 4 + 8
v(2) = 12
v(5) = (5)^2 - (5) + 10
v(5) = 25 + 5
v(5) = 30
You can write these values as coordinate pairs, like so: (2, 12) and (5, 30).
The formula for the average rate of change is

. When you plug in the values from this particular case, the average rate of change formula becomes

, or

.
Looking at the equation, you can solve for the average rate of change between t = 2 and t = 5, which equals
6.
Answer:
(-3,6)
It is -3 on the x line and 6 on the y.
Hope this helps!
Answer:
0.7061 = 70.61% probability she will have her first crash within the first 30 races she runs this season
Step-by-step explanation:
For each race, there are only two possible outcomes. Either the person has a crash, or the person does not. The probability of having a crash during a race is independent of whether there was a crash in any other race. This means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
A certain performer has an independent .04 probability of a crash in each race.
This means that 
a) What is the probability she will have her first crash within the first 30 races she runs this season
This is:

When 
We have that:



0.7061 = 70.61% probability she will have her first crash within the first 30 races she runs this season
Answer:
225.78 grams
Step-by-step explanation:
To solve this question, we would be using the formula
P(t) = Po × 2^t/n
Where P(t) = Remaining amount after r hours
Po = Initial amount
t = Time
In the question,
Where P(t) = Remaining amount after r hours = unknown
Po = Initial amount = 537
t = Time = 10 days
P(t) = 537 × 2^(10/)
P(t) = 225.78 grams
Therefore, the amount of iodine-131 left after 10 days = 225.78 grams
Width = w
Length = 5w
Given,
Perimeter = 276 ft
5w * w = 276
w² = 55.2
--- w = 7.429670248402684 ≈ 7.43 ft
--- l = 5w = 5*7.43 = <span>37.14835124201342 </span>≈ 37.15 ft