P = ab^2
q = a^3 b
p = a * b * b
q = a*a*a * b
Pairing the duplicates we have LCM = a*a*a*b*b = a^3 b^2 answer
Answer:
1,809.98 lb*m/s^2
Step-by-step explanation:
First, we want to know how much weight of the boulder is projected along the path in which the boulder can move.
The weight of the boulder is:
W = 322lb*9.8 m/s^2 = (3,155.6 lb*m/s^2)
This weight has a direction that is vertical, pointing downwards.
Now, we know that the angle of the hill is 35°
The angle that makes the direction of the weight and this angle, is:
(90° - 35°)
(A rough sketch of this situation can be seen in the image below)
Then we need to project the weight over this direction, and that will be given by:
P = W*cos(90° - 35°) = (3,155.6 lb*m/s^2)*cos(55°) = 1,809.98 lb*m/s^2
This is the force that Samuel needs to exert on the boulder if he wants the boulder to not roll down.
Answer:
The probability is
or 25%
Step-by-step explanation:
The question states the total number of vehicles, as well as the number of damaged vehicles on a yearly basis. If 50 vehicles in every 200 vehicles per year are damaged, then we can obtain:
Probability of a damaged vehicle in any given year = 
=
=
or 25%
So the answer is that the negative export cannot be part of an expressions numerator here is a website that can help you know or explain more my my answer hope this helped https://www.purplemath.com/modules/exponent2.htm or this website
Answer: You need to wait at least 6.4 hours to eat the ribs.
t ≥ 6.4 hours.
Step-by-step explanation:
The initial temperature is 40°F, and it increases by 25% each hour.
This means that during hour 0 the temperature is 40° F
after the first hour, at h = 1h we have an increase of 25%, this means that the new temperature is:
T = 40° F + 0.25*40° F = 1.25*40° F
after another hour we have another increase of 25%, the temperature now is:
T = (1.25*40° F) + 0.25*(1.25*40° F) = (40° F)*(1.25)^2
Now, we can model the temperature at the hour h as:
T(h) = (40°f)*1.25^h
now we want to find the number of hours needed to get the temperature equal to 165°F. which is the minimum temperature that the ribs need to reach in order to be safe to eaten.
So we have:
(40°f)*1.25^h = 165° F
1.25^h = 165/40 = 4.125
h = ln(4.125)/ln(1.25) = 6.4 hours.
then the inequality is:
t ≥ 6.4 hours.