Answer:
Explanation:
Molarity is number of moles÷ volume of the solution.
Density = mass÷ volume.
Moles is mass÷molar mass
Molar mass of Nacl is 58.44g/mol
Moles is 1/58.44=0.017moles.
0.017 moles divided by volume which is 1.
Molarity is 0.017 moles
Molarity is the number of moles of solutes divided by volume of the solution.
Answer: -
First Ionization energy IE 1 for element X = 801
Here X is told to be in the third period.
So principal quantum number n = 3 for X.
For 1st ionization energy the expression is
IE1 = 13.6 x Z ^2 / n^2
Where Z =atomic number.
Thus Z =( n^2 x IE 1 / 13.6)^(1/2)
Z = ( 3^2 x 801 / 13.6 )^ (1/2)
= 23
Number of electrons = Z = 23
Nearest noble gas = Argon
Argon atomic number = 18
Number of extra electrons = 23 – 18 = 5
a) Electronic Configuration= [Ar] 3d34s2
We know that more the value of atomic radii, lower the force of attraction on the electrons by the nucleus and thus lower the first ionization energy.
So more the first ionization energy, less is the atomic radius.
X has more IE1 than Y.
b) So the atomic radius of X is lesser than that of Y.
c) After the first ionization, the atom is no longer electrically neutral. There is an extra proton in the atom. Due to this the remaining electrons are more strongly pulled inside than before ionization. Hence after ionization, the radii of Y decreases.
Answer:
C I think from what I did to solve!!
Answer:
yeah
Explanation:
Image result for The highest level of organization for living things is the biosphere; it encompasses all other levels. The biological levels of organization of living things arranged from the simplest to most complex are: organelle, cells, tissues, organs, organ systems, organisms, populations, communities, ecosystem, and biosphere.
The highest level of organization for living things is the biosphere; it encompasses all other levels. The biological levels of organization of living things arranged from the simplest to most complex are: organelle, cells, tissues, organs, organ systems, organisms, populations, communities, ecosystem, and biosphere.
Answer:
D. The stronger the forces, the more heat that must be added to boil
the liquid
Explanation:
The intermolecular forces hold the molecules together and so require energy to break them. When a substance changes states, it's not the atoms that separate from other atoms, it's molecules separating from molecules. The stronger the intermolecular forces, the more energy is required to break the intermolecular forces