Answer:
freezing point (°C) of the solution = - 3.34° C
Explanation:
From the given information:
The freezing point (°C) of a solution can be prepared by using the formula:

where;
i = vant Hoff factor
the vant Hoff factor is the totality of the number of ions in the solution
Since there are 1 calcium ion and 2 nitrate ions present in Ca(NO3)2, the vant Hoff factor = 3
= 1.86 °C/m
m = molality of the solution and it can be determined by using the formula

which can now be re-written as :



molality = 0.599 m
∴
The freezing point (°C) of a solution can be prepared by using the formula:



the freezing point of water - freezing point of the solution
3.34° C = 0° C - freezing point of the solution
freezing point (°C) of the solution = 0° C - 3.34° C
freezing point (°C) of the solution = - 3.34° C
<span>Oxidation is the loss of electrons and corresponds to an increase in oxidation state. A reduction is the gain of electrons and corresponds to a decrease in oxidation state. Balancing redox reactions can be more complicated than balancing other types of reactions because both the mass and charge must be balanced. Redox reactions occurring in aqueous solutions can be balanced by using a special procedure called the half-reaction method of balancing. In this procedure, the overall equation is broken down into two half-reactions: one for oxidation and the other for reduction. The half-reactions are balanced individually and then added together so that the number of electrons generated in the oxidation half-reaction is the same as the number of electrons consumed in the reduction half-reaction.</span>
Need a picture for reference
B.They identify what phase the substances are in.
There’s nothing here though