If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish equilibrium. If a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. This page covers changes to the position of equilibrium due to such changes and discusses briefly why catalysts have no effect on the equilibrium position.
For example, if the system is changed in a way that increases the concentration of one of the reacting species, it must favor the reaction in which that species is consumed. In other words, if there is an increase in products, the reaction quotient, Qc, is increased, making it greater than the equilibrium constant, Kc.
Answer:
True.
Explanation:
An exothermic reaction has a positive enthalpy (heat) of reaction. However, it can be negative in some circumstances.
Answer:
D
Explanation:
This sentence has the most sensory details or details giving more description of the 5 senses.
Hope this helps :)
Answer:
Rutherfords
Explanation:
The model of the atom supported by Bohr's hydrogen experiment is the Rutherford's model of the atom.
Rutherford through his experiment on gold foil suggested the atomic model of the atom. The model posits that an atom has a small positively charged center(nucleus) where nearly all the mass is concentrated.
- Surrounding the nucleus is the large space containing electrons.
- In the Bohr's model of the atom, he suggested that the extranuclear space of the atom is made up of electrons in specific spherical orbits around the nucleus.
Answer:
0.0611M of HNO3
Explanation:
<em>The concentration of the NaOH solution must be 0.1198M</em>
<em />
The reaction of NaOH with HNO3 is:
NaOH + HNO3 → NaNO3 + H2O
<em>1 mole of NaOH reacts per mole of HNO3.</em>
That means the moles of NaOH used in the titration are equal to moles of HNO3.
<em>Moles HNO3:</em>
12.75mL = 0.01275L * (0.1198mol / L) = 0.0015274 moles NaOH = Moles HNO3.
In 25.00mL = 0.025L -The volume of the aliquot-:
0.00153 moles HNO3 / 0.025L =
<h3> 0.0611M of HNO3</h3>