Answer:
A. 2NO + O2 -> 2NO2
B. 4Co + 3O2 -> 2Co2O3
C. 2Al + 3Cl2 -> Al2Cl6
D. 2C2H6 + 7O2 -> 4CO2 + 6H2O
E. TiCl4 + 4Na -> Ti + 4NaCl
Explanation:
In the molecular equation for a reaction, all of the reactants and products are represented as neutral molecules (even soluble ionic compounds and strong acids). In the complete ionic equation, soluble ionic compounds and strong acids are rewritten as dissociated ions.
The net ionic equation is a chemical equation for a reaction that lists only those species participating in the reaction. The net ionic equation is commonly used in acid-base neutralization reactions, double displacement reactions, and redox reactions.
Answer:
This question is incomplete
Explanation:
There are two major forms of energy; these are potential and kinetic energy. Kinetic energy is the energy present in moving options. Examples include mechanical and electrical energy.
The formula for kinetic energy is 1/2mv² where "m" is mass and "v" is velocity.
While potential energy is the energy present in stationary objects that can be put to use in future. Example includes a ball in its resting state. The formula for potential energy is "mgh" where "m" is mass, "g" is acceleration due to gravity and "h" is height
Considering the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. Looking at the example provided earlier for potential energy, a ball in its resting position (having a potential energy) when kicked will have a kinetic energy (which can be calculated with the formula provided earlier), hence
Total energy = potential energy (P.E) + kinetic energy (K.E)
This formula and the explanation above can be used to answer the completed question.
NOTE: There is no standard relationship between P.E and K.E. They could be directly or indirectly proportional depending on the circumstance.
Answer:
The Third Law of thermodynamics states that the entropy of a pure substance in a perfect crystalline state at zero temperature is zero.
For very large numbers, it is much more convenient to use scientific notation. To do this, detect first the position of the decimal point. For whole numbers, the decimal point is place implicitly after the very last digit. Then, move this decimal point to the left until you reach to the last digit. In this case, you moved 8 places until you reach 6.4. Because the number is more than 1, the exponent would have a positive sign. Hence, the scientific notation would be 6.4×10⁸.