Answer:
The particles in the water are always moving
Explanation:
Answer: The pressure will be equal to 0.19 atm.
Explanation:
The Ideal Gas Equation states the relationship among the pressure, temperature, volume, and number of moles of a gas.
The equation is:

where P = pressure in <em>atm</em>
V = volume in <em>L</em>
n = numbers of moles of gas in <em>mol</em>
R = universal gas constant = 0.08206 
T = temperature in <em>K</em>
Based on the problem,
mass of O2 = 1.0 g
V = 4.00 L
T = 293 K
mol of O2 = ?
P = ?
We need to calculate the moles of O2 before we can use the Ideal Gas Equation. To solve the number of moles, we use the equation:

The molar mass of O2 is 32 g/mol, therefore,

no. of moles of O2 = 0.03125 mol.
Now we substitute the values into the Ideal Gas equation:

Solving for P, we will get

In correct significant figures, P is equal to 0.19 atm.
Salutations!
During natural processes, heat transfer is always from: warmer too cooler. For instance, when energy is added to atoms, more of heat is required to move them rapidly. When the heat is not quite enough, they atoms move very slowly. This is why heat always transfers from warmer to cooler, like kinetic energy.
Hope I helped (:
Have a great day!