<span>We can use the ideal gas law PV=nRT
For the first phase
The starting temperature (T1) is 273.15K (0C). n is 1 mole, R is a constant, P = 1 atm, V1 is unknown.
The end temperature (T2) is unknown, n= 1 mol, R is a constant, P = 3*P1= 3 atm, V2=V1
Since n, R, and V will be constant between the two conditions: P1/T1=P2/T2
or T2= (P2*T1)/(P1) so T2= (3 atm*273.15K)/(1 atm)= 3*273.15= 816.45K
For the second phase:
Only the temperature and volume change while n, P, and R are constant between the start and finish.
So: V1/T1=V2/T2 While we don't know the initial volume, we know that V2=2*V1 and T1=816.45K
So T2=(V2*T1)/V1= (2*V1*T1)/V1=2*T1= 2*816.45K= 1638.9K
To find the total heat added to the gas you need to subtract the original amount of heat so
1638.9K-273.15K= 1365.75K</span>
The answer to the question is B D E
Answer: -
71
Explanation: -
From the diagram, we see that volume goes from 70 to 75 in 5 markings.
Each marking is for 1.
It is the most accuracy possible as there is no smaller marking.
Significant figures expresses the required amount of accuracy.
Thus the volume indicated from the diagram is 71 .
Answer : The line-angle formula for
is shown below.
Explanation :
Condensed structural formula : It is a formula in which the lines are used between the bonded atoms and the atoms are also shown in the structural formula.
Line-angle formula : In the line-angle formula, the carbon atoms are represented at the corner and ends of the lines with some angle and the hydrogen atoms are hidden.
The line-angle formula for
is shown below.