Answer:
atomic number
Explanation:
mass is determined by the protons and neutrons
P2O5 = Phosphorus pentoxide
CuO = Copper (II) oxide
NH4CI = Ammonium Chloride
Mn(OH)2 = Pyrochroite
H2O2 = Hydrogen peroxide
P4S9 = Tetraphosphorus nonasulfide
CIO2 = Chlorine dioxide
NaF = Sodium fluoride
FeSO3 = Iron (II) Sulfite
Fe(NO3)3 = Iron (III) Nitrate
Cr(NO2)3 = Chromium (III) Nitrite
NaHCO3 = Sodium Hydrogen Carbonate
H2PO4 = Dihydrogen Phosphate Ion
NaCN = Sodium Cyanide
IF7 = Iodine Heptafluoride
PCI3 = Phosphorus Trichloride
Answer:
incorporates both ionic bonding and covalent bonding.
Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals.
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element and the element which accepts the electrons is known as electronegative element. This bond is formed between a metal and an non-metal.
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here potassium is having an oxidation state of +1 called as
cation and nitrate
is an anion with oxidation state of -1. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
.
is formed by sharing of electrons between two non metals nitrogen and oxygen.
Thus
incorporates both ionic bonding and covalent bonding.
Answer:
2PbSO4 → 2PbSO3 + O2
Explanation:
in original equation we notice that we have one extra oxygen, which we cannot form a O2 with, so by multiplying everything else by 2, we get 2 extra oxygen
Answer:
(C) Acetylene (ethyne) can be converted to the acetylide anion by treating with a strong base such as CH₃Li.
Explanation:
Acetylene (C₂H₂) can be converted to the acetylide anion (C₂⁻²) when treated with a base because it will donate protons (2H⁺). So it will be a neutralization reaction. NaNH₂ and NaOH are strong bases because they are good electrons donators ( NaNH₂ has pair of electrons on N, and NaOH has the group OH⁻), but CH₃Li has no pair of electrons to donate, so it's not a strong base.