I believe the answer is the second one
Answer:








Step-by-step explanation:
Given



Solving (a): NK
MK is a diagonal and NK is half of the diagonal. So:



Solving (b): JL
JL is a diagonal, and it is twice of NL.



Solving (c): KL
To solve for KL, we consider triangle KNL where:

and





Solving (d - h):
To do this, we consider triangle JKN
-- diagonals bisect one another at right angle
Alternate interior angles are equal. So:

Similarly:


So:







4.5 mph (aka 4 and 1/2 mph)
(tan(<em>x</em>) + cot(<em>x</em>)) / (tan(<em>x</em>) - cot(<em>x</em>)) = (tan²(<em>x</em>) + 1) / (tan²(<em>x</em>) - 1)
… = (sin²(<em>x</em>) + cos²(<em>x</em>)) / (sin²(<em>x</em>) - cos²(<em>x</em>))
… = -1/cos(2<em>x</em>)
Then as <em>x</em> approaches <em>π</em>/2, the limit is -1/cos(2•<em>π</em>/2) = -sec(<em>π</em>) = 1.
<span>2/3 (x-7)= -2
x - 7 = -2 * 3/2
x - 7 = -3
x = -3 + 7
x = 4</span>