Answer:
Kindly check explanation
Step-by-step explanation:
Given the following :
Group 1:
μ1 = 59.7
s1 = 2.8
n1 = sample size = 12
Group 2:
μ2 = 64.7
s2 = 8.3
n2 = sample size = 15
α = 0.1
Assume normal distribution and equ sample variance
A.)
Null and alternative hypothesis
Null : μ1 = μ2
Alternative : μ1 < μ2
B.)
USing the t test
Test statistic :
t = (m1 - m2) / S(√1/n1 + 1/n2)
S = √(((n1 - 1)s²1 + (n2 - 1)s²2) / (n1 + n2 - 2))
S = √(((12 - 1)2.8^2 + (15 - 1)8.3^2) / (12 + 15 - 2))
S = 6.4829005
t = (59.7 - 64.7) / 6.4829005(√1/12 + 1/15)
t = - 5 / 2.5108165
tstat = −1.991384
Decision rule :
If tstat < - tα, (n1+n2-2) ; reject the Null
tstat < t0.1,25
From t table :
-t0.1, 25 = - 1.3163
tstat = - 1.9913
-1.9913 < - 1.3163 ; Hence reject the Null
-
The median number of minutes for Jake and Sarah are equal, but the mean numbers are different.
-
For this, you never said the choices, but I’ve done this before, so I’m going to use the answer choices I had, and hopefully they are right.
Our choices are -
• The median number of minutes for Jake is higher than the median number of minutes for Sarah.
• The mean number of minutes for Sarah is higher than the mean number of minutes for Jake.
• The mean number of minutes for Jake and Sarah are equal, but the median number of minutes are different.
• The median number of minutes for Jake and Sarah are equal, but the mean number of minutes are different.
————————
So to answer the question, we neee to find the median and mean for each data set, so -
Jack = [90 median] [89.6 mean]
Sarah = [90 median] [89.5 mean]
We can clearly see the median for both is 90, so we can eliminate all the choices that say they are unequal.
We can also see that Jack has a higher mean (89.6) compared to Sarah (89.5).
We can eliminate all the choices that don’t imply that too.
That leaves us with -
• The median number of minutes for Jake and Sarah are equal, but the mean number of minutes are different.
Math is a subject which many people find disgusting and horrible but which i favour over others<span />
Boi. This is the easiest question i've ever answered. The line that crosses the y-axis at the point (0,-1) (the line on the right)
Answer:
41
Step-by-step explanation:
putting x into the eqn