Given:
The inequalities are:


To find:
The integer values that satisfy both inequalities.
Solution:
We have,


For
, the possible integer values are
...(i)
For
, the possible integer values are
...(ii)
The common values of x in (i) and (ii) are

Therefore, the integer values -1, 0 and 1 satisfy both inequalities.
You would be subtracting by 5 so the next three would be -16, -21, -26
Answer:
6 months, i used the equation from part a so i know it’s right
Step-by-step explanation:
a) 15 + 12x = 87
b) 12x = 87-15=72
72/12 = 6
2x -3y = 13
4x -y = -9
Multiply the second equation by -3 to make the coefficient of Y opposite the first equation.
4x -y = -9 x -3 = -12x + 3y = 27
Now add this to the first equation:
2x -12x = -10x
-3y +3y = 0
13 +27 = 40
Now you have :
-10x = 40
Divide each side by -10:
x = 40 / -10
x = -4
Now you have a value for x, replace that into the first equation and solve for y:
2(-4) - 3y = 13
-8 - 3y = 13
Add 8 to both sides:
-3y = 21
Divide both sides by -3:
y = 21/-3
y = -7
Now you have X = -4 and y = -7
(-4,-7)
Answer:
Step-by-step explanation:
Here are the steps to follow when solving absolute value inequalities:
Isolate the absolute value expression on the left side of the inequality.
If the number on the other side of the inequality sign is negative, your equation either has no solution or all real numbers as solutions.
If your problem has a greater than sign (your problem now says that an absolute value is greater than a number), then set up an "or" compound inequality that looks like this:
(quantity inside absolute value) < -(number on other side)
OR
(quantity inside absolute value) > (number on other side)
The same setup is used for a ³ sign.
If your absolute value is less than a number, then set up a three-part compound inequality that looks like this:
-(number on other side) < (quantity inside absolute value) < (number on other side)
The same setup is used for a £ sign