Answer:
The value of x and y that satisfy the equations is x = 2 and y = 1
Step-by-step explanation:
Given
2.5(x−3y)−3=−3x+0.5
3(x+6y)+4=9y+19
Required.
Find x and y
We start by opening all brackets
2.5(x−3y)−3=−3x+0.5 becomes
2.5x - 7.5y - 3 = -3x + 0.5
Collect like terms
2.5x + 3x - 7.5y = 3 + 0.5
5.5x - 7.5y = 3.5 ---- Equation 1
In similar vein, 3(x+6y)+4=9y+19 becomes
3x + 18y + 4 = 9y + 19
Collect like terms
3x + 18y - 9y = 19 - 4
3x + 9y = 15
Multiply through by ⅓
⅓ * 3x + ⅓ * 9y = ⅓ * 15
x + 3y = 5
Make x the subject of formula
x = 5 - 3y
Substitute 5 - 3y for x in equation 1
5.5(5 - 3y) - 7.5y = 3.5
27.5 - 16.5y - 7.5y = 3.5
27.5 - 24y = 3.5
Collect like terms
-24y = 3.5 - 27.5
-24y = -24
Divide through by - 24
y = 1
Recall that x = 5 - 3y.
Substitute 1 for y in this equation
x = 5 - 3(1)
x = 5 - 3
x = 2
Hence, x = 2 and y = 1
Answer:
When translating phrases into algebraic expressions, you need to identify keywords and phrases which specifically refer to a mathematical operation (addition, subtraction, multiplication, and division). Usually, you can write out the algebraic expression of the verbal description in the order that it is said
Five hundred six thousand seven hundred nine.
Answer:
a or c
Step-by-step explanation:
1. a. Unique Solution
2. a. Unique Solution
3. b. No Solution
4. c. Infinitely Many Solutions
5. b. No Solution