Answer:
v = 2.45 m/s
Explanation:
first we find the time taken during this motion by considering the vertical motion only and applying second equation of motion:
h = Vi t + (1/2)gt²
where,
h = height of cliff = 15 m
Vi = Initial Vertical Velocity = 0 m/s
t = time taken = ?
g = 9.8 m/s²
Therefore,
15 m = (0 m/s) t + (1/2)(9.8 m/s²)t²
t² = (15 m)/(4.9 m/s²)
t = √3.06 s²
t = 1.75 s
Now, we consider the horizontal motion. Since, we neglect air friction effects. Therefore, the horizontal motion has uniform velocity. Therefore,
s = vt
where,
s = horizontal distance covered = 4.3 m
v = original horizontal velocity = ?
Therefore,
4.3 m = v(1.75 s)
v = 4.3 m/1.75 s
<u>v = 2.45 m/s</u>
May be
May be not
It is depend up on your level of thinkin
But in graduation may be not second option will consider
....
The thermal energy was produced is 116J
<h3>What is the thermal energy produced?</h3>
Now we know that the frictional force produces the energy that is lost as heat as the body slides down the incline. The magnitude of the frictional force is obtained from;
Ff= μmgcosθ
Ff = 0.65 * 5.0 kg * 9.8 m/s^2 * cos 25
Ff = 29 N
Hence, the thermal energy is;
29 N * 4.0 m = 116J
Learn more about frictional force:brainly.com/question/1714663
#SPJ1
Answer:
The statements A and D are true
The statements B and C are false
Explanation:
The force between charges can be explained by the Coulomb's Law.
According to Coulomb:
1 - Like charges always repel each other
2- Unlike or opposite charges always attrack each other
3- Force between 2 charges is given by:

where F is the force between 2 charges and r is the distance between 2 charges.
We can see that Force F is inversely proportional to the distance r
Which means that when F increase, r decreases and when F decreases, r increases