As we know that total work done by a force is given by


so it is product of force and displacement along same direction
as we can write it as

so it must be the product of force and displacement in same directions so correct answer must be
<u>B. in the same direction as the displacement vector and the motion.</u>
Answer:
Total electric potential, 
Explanation:
It is given that,
First charge, 
Second charge, 
Distance of first charge from origin, 
Distance of second charge from origin, 
We need to find the total electric potential at the origin. The electric potential at the origin is given by :



V = 1321826.08 V
or

So, the total electric potential at the origin is
. Hence, this is the required solution.
Answer:
Transverse wave
Explanation:
The wave is moving forwards from the hand to the point of attachment
To solve this problem, we use the formula
λ = s sin θ
where s is the separation and θ is the angle interference
So,
λ = 20 x 10^-6 sin 2.5
λ = 8.72 x 10^-7 m
The required angle for the fourth order bright fringe is
θb = sin⁻¹ (4λ / s) = sin⁻¹ (4 (8.72 x 10^-7 m)/ 20 x 10^-6 ) = 10.04°
The required angle for the fourth order dark fringe is
θd = sin⁻¹ (4.5 λ / s) = sin⁻¹ (4.5 (8.72 x 10^-7 m)/ 20 x 10^-6 ) = 11.31°
For every force, there is an equal and opposite reactionary force.
So when your weight acts on the bed, in order for the bed to not collapse, it must be able to exert an equal and opposite force back on you.