Air resistance is ignored.
g = 9.8 m/s².
At maximum height, the vertical velocity is zero.
Let h = the maximum height reached.
Let u = the vertical launch velocity.
Because ot takes 5.0 seconds to reach maximum height, therefore
(u m/s) - (9.8 m/s²)*(5 s) = 0
u = 49 m/s
The maximum height reached is
h = (49 m/s)*(5 s) - (1/2)*(9.8 m/s²)*(5 s)²
= 122.5 m
Answer: 122.5 m
Answer:
False
Explanation:
Most comets are located outside the solar system, in part of the cloud that originated from dust and gas that has remained virtually untouchable for billions of years. The orbit of these comets can reach the order of a light year. Thus, they are called long-period comets.
Answer: a) 127 eV; b) there is no change of kinetic energy.
Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field. This means the electric force do work in this trayectory and then the protons increased changes its speed.
If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then they can not move to higher potential if any external force does work on the system.
In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons can not move to lower potential region (V=-40V).
I'm guessing that this is a problem to find the weight of a 90kg mass on a planet where the acceleration of gravity is 4 m/s^2. (Much less gravity than Earth, a little more than Mars.)
Just do the multiplication, and you get
360 Newtons.