1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
2 years ago
7

help please!! find the area of each triangle. round intermediate values to the nearest tenth. use the rounded values to calculat

e the next value.

Mathematics
1 answer:
White raven [17]2 years ago
7 0

Area of a triangle = (1/2)*base*height

For both of the triangles, you have the base (8.8 for the triangle on the left, 7.6 for the triangle on the right) and the side lengths, but not the height. But since both are isosceles triangles, you can find the height using the pythagorean theorem.

5.

First divide the triangle vertically into two triangles (see attached picture). Now you have two right triangles, you can apply the pythagorean theorem on either one of them to find the height. The pythagorean theorem says that for a right triangle, a^2+b^2=c^2, where c is the hypotenuse and a and b are the sides of the triangle.

Substituting the given values and rounding to nearest tenth:

a^2+b^2=c^2\\4.4^2+h^2=10^2\\h=9.0

Now that you have the height, you can find the area of the entire triangle.

A = (1/2)*base*height

A = (1/2)*8.8*9.0 = 39.6

6.

Same procedure.

a^2+b^2=c^2\\3.8^2+h^2=10^2\\h=9.2

A = (1/2)*base*height

A = (1/2)*7.6*9.2 = 35.0

You might be interested in
I WILL GIVE BRAINLIEST<br> Solve for x<br> Answer must be simplified<br> <img src="https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B7%7D
34kurt

Answer:

x ≥ -42

Step-by-step explanation:

x/7 ≥ -6

Multiply each side by 7

x/7 *7  ≥ -6 *7

x ≥ -42

6 0
3 years ago
2〖sen〗^2 x+3 senx+1=0
KonstantinChe [14]

2 sin²(<em>x</em>) + 3 sin(<em>x</em>) + 1 = 0

(2 sin(<em>x</em>) + 1) (sin(<em>x</em>) + 1) = 0

2 sin(<em>x</em>) + 1 = 0   OR   sin(<em>x</em>) + 1 = 0

sin(<em>x</em>) = -1/2   OR   sin(<em>x</em>) = -1

The first equation gives two solution sets,

<em>x</em> = sin⁻¹(-1/2) + 2<em>nπ</em> = -<em>π</em>/6 + 2<em>nπ</em>

<em>x</em> = <em>π</em> - sin⁻¹(-1/2) + 2<em>nπ</em> = 5<em>π</em>/6 + 2<em>nπ</em>

(where <em>n</em> is any integer), while the second equation gives

<em>x</em> = sin⁻¹(-1) + 2<em>nπ</em> = -<em>π</em>/2 + 2<em>nπ</em>

2 cot(<em>x</em>) sec(<em>x</em>) + 2 sec(<em>x</em>) + cot(<em>x</em>) + 1 = 0

2 sec(<em>x</em>) (cot(<em>x</em>) + 1) + cot(<em>x</em>) + 1 = 0

(2 sec(<em>x</em>) + 1) (cot(<em>x</em>) + 1) = 0

2 sec(<em>x</em>) + 1 = 0   OR   cot(<em>x</em>) + 1 = 0

sec(<em>x</em>) = -1/2   OR   cot(<em>x</em>) = -1

cos(<em>x</em>) = -2   OR   tan(<em>x</em>) = -1

The first equation has no (real) solutions, since -1 ≤ cos(<em>x</em>) ≤ 1 for all (real) <em>x</em>. The second equation gives

<em>x</em> = tan⁻¹(-1) + <em>nπ</em> = -<em>π</em>/4 + <em>nπ</em>

<em />

sin(<em>x</em>) cos²(<em>x</em>) = sin(<em>x</em>)

sin(<em>x</em>) cos²(<em>x</em>) - sin(<em>x</em>) = 0

sin(<em>x</em>) (cos²(<em>x</em>) - 1) = 0

sin(<em>x</em>) (-sin²(<em>x</em>)) = 0

sin³(<em>x</em>) = 0

sin(<em>x</em>) = 0

<em>x</em> = sin⁻¹(0) + 2<em>nπ</em> = 2<em>nπ</em>

<em />

2 cos²(<em>x</em>) + 2 sin(<em>x</em>) - 12 = 0

2 (1 - sin²(<em>x</em>)) + 2 sin(<em>x</em>) - 12 = 0

-2 sin²(<em>x</em>) + 2 sin(<em>x</em>) - 10 = 0

sin²(<em>x</em>) - sin(<em>x</em>) + 5 = 0

Using the quadratic formula, we get

sin(<em>x</em>) = (1 ± √(1 - 20)) / 2 = (1 ± √(-19)) / 2

but the square root contains a negative number, which means there is no real solution.

2 csc²(<em>x</em>) + cot²(<em>x</em>) - 3 = 0

2 (cot²(<em>x</em>) + 1) + cot²(<em>x</em>) - 3 = 0

3 cot²(<em>x</em>) - 1 = 0

cot²(<em>x</em>) = 1/3

tan²(<em>x</em>) = 3

tan(<em>x</em>) = ± √3

<em>x</em> = tan⁻¹(√3) + <em>nπ</em>  OR   <em>x</em> = tan⁻¹(-√3) + <em>nπ</em>

<em>x</em> = <em>π</em>/3 + <em>nπ</em>   OR   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

7 0
2 years ago
What is the solution to the equation?
Zielflug [23.3K]

Answer:

Exact form - \frac{25}{2}

Decimal form - 12.5

Mixed number form - 12\frac{1}{2}

Have a nice day.

4 0
2 years ago
Can u plz show work?Only need 84
Sonbull [250]

Answer:

Step-by-step explanation:

6 0
3 years ago
What is the value of c so that y=x^2+15x+c is a perfect square.
Verizon [17]
Divide 15 by 2, then square the amount.

(15/2)^2 = 225/4
7 0
3 years ago
Read 2 more answers
Other questions:
  • Y=5cos(20x) find amplitude, period &amp; graph
    13·1 answer
  • What will always exist in any economic system?
    15·2 answers
  • twelve and three tenths more than five and thirteen thousandths of a number d is equal to fifteen and three hundred two thousand
    6·1 answer
  • 0.2 is 1/10 of what <br> pls tell me
    11·1 answer
  • Solve for w. Give an exact answer in simplified form. 53w+13 &lt; 56w + 16
    9·1 answer
  • 1:1.2 as a fraction pls tell me in one minute
    8·1 answer
  • I really need help with this. Can you help me please?
    10·1 answer
  • What is the value of x?
    13·1 answer
  • A chef has 6 blocks of butter. Each block weighs 1 pound. She cuts each block into fifths. How many15-pound pieces of butter doe
    12·1 answer
  • If y=x+4 then what is (x-y)^3
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!