we can see that the center is (-3, 3) and the radius is 9 units.
<h3 /><h3>
How to find the center and radius of the circle?</h3>
The general circle equation, for a circle with a center (a, b) and radius R is given by:
(x - a)^2 + (y - b)^2 = R^2
Here we have the equation:
x^2 + y^2 + 6x = 6y + 63
Let's complete squares:
x^2 + y^2 + 6x - 6y = 63
(x^2 + 6x) + (y^2 - 6y) = 63
(x^2 + 2*3x) + (y^2 - 2*3y) = 63
Now we can add and subtract 9, (two times) so we get:
(x^2 + 2*3x + 9) - 9 + (x^2 - 2*3x + 9) - 9 = 63
(x + 3)^2 + (y - 3)^2 = 63 + 9 + 9 = 81 = 9^2
(x + 3)^2 + (y - 3)^2 = 9^2
Comparing with the general circle equation, we can see that the center is (-3, 3) and the radius is 9 units.
If you want to learn more about circles:
brainly.com/question/1559324
#SPJ1
Answer: 5 km walking and 30 km by bus
Step-by-step explanation:
Yochanan walked from home to the bus stop at an average speed of 5 km / h. He immediately got on his school bus and traveled at an average speed of 60 km / h until he got to school. The total distance from his home to school is 35 km, and the entire trip took 1.5 hours. How many km did Yochanan cover by walking and how many did he cover by travelling on the bus?
walking - 5km/h bus - 60km/h
distance walking - d₁ distance bus - d₂
time walking - t₁ time bus - t₂
d₁ + d₂ = 35
t₁ + t₂ = 1.5
v = d/t
vwalking = d₁/t₁
5 = d₁/t₁ ⇒ d₁ = 5t₁
vbus = d₂/t₂
60 = d₂/t₂ ⇒ d₂ = 60t₂
d₁ + d₂ = 35 ⇒ 5t₁ + 60t₂ = 35
_________________________
5t₁ + 60t₂ = 35
t₁ + t₂ = 1.5 (*-5)
5t₁ + 60t₂ = 35
-5t₁ -5t₂ = -7.5 (+)
__________________________
55t₂ = 27.5
t₂ = 27.5/55 = 0.5 h
t₁ + t₂ = 1.5 ⇒ t₁ = 1.5 - 0.5 = 1h
d₁ = 5t₁ ⇒ d₁ = 5.1 = 5 km
d₂ = 60t₂ ⇒ d₂ = 30.0.5 = 30 km
Answer:
C = 39 pi meters
Step-by-step explanation:
The circumference of a circle is given by
C = 2 * pi * r
C = 2 * pi * 19.5
C = 39 pi meters
Answer – TrueA design is said to have Rotational symmetry if all its characteristics remain the same after it has been rotated about an axis lying in its plane. In other words, rotational symmetry is the quality possessed by a shape has when it looks the same after it has undergone some rotation by a partial turn about an axis lying in its plane. Rotational symmetry is also referred to as radial symmetry.