Answer:

Step-by-step explanation:
We are given that a function

We have to find the average value of function on the given interval [1,e]
Average value of function on interval [a,b] is given by

Using the formula

By Parts integration formula

u=ln x and v=dx
Apply by parts integration
![f_{avg}=\frac{1}{e-1}([xlnx]^{e}_{1}-\int_{1}^{e}(\frac{1}{x}\times xdx))](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28%5Bxlnx%5D%5E%7Be%7D_%7B1%7D-%5Cint_%7B1%7D%5E%7Be%7D%28%5Cfrac%7B1%7D%7Bx%7D%5Ctimes%20xdx%29%29)
![f_{avg}=\frac{1}{e-1}(elne-ln1-[x]^{e}_{1})](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28elne-ln1-%5Bx%5D%5E%7Be%7D_%7B1%7D%29)

By using property lne=1,ln 1=0

Answer:

Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or 
In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin
Let
m ----> the distance in miles (y-coordinate)
h ----> the time in hours (x-coordinate)
In this problem the constant of proportionality k is given and is equal to
----> the speed
substitute

Answer:
C
Explanation:
The place where the lines intersect is between the lines of the graph.