Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205
For a given peak intensity of radiation of a star that occurs at a wavelength of 2 nanometers, this is located at the spectral band of an X-ray. An X-ray's wavelength typically goes from 0.1 nano meters to 10 nano meters. Given that, the wavelength of the star fits perfectly into the range of an X-ray
Answer:
The answer is below
Explanation:
one gallon of gasoline produces 9.50 kg of carbon.
The total number of cars = 40 million
Distance covered by each car = 7930 miles
Consumption rate of the cars per miles traveled is 23.6 miles per gallon.
Hence the annual gasoline consumption by all the cars in the United States of America = (total number of cars × Distance covered by each car) ÷ Consumption rate of the cars per miles
annual gasoline consumption by all the cars = (40000000 × 7930 miles) ÷ 23.6 miles/gallon = `1.344067797 × 10¹⁰ gallons
1.344067797 × 10¹⁰ gallons = 
This works because it demonstrates that as volume increases, pressure decreases (inverse relationship)