Answer:
c
Explanation:
you don't think of particles as dense and less dense
dust particles containvenergy but won't release it unless acted upon a force
gas molecules move freely and collide with dust particles which is correct
If they were not repeatable people would think the experiment is not accurate. If it can be repeated than the data can prove a very valid point.
Answer:
-800 kJ/mol
Explanation:
To solve the problem, we have to express the enthalpy of combustion (ΔHc) in kJ per mole (kJ/mol).
First, we have to calculate the moles of methane (CH₄) there are in 2.50 g of substance. For this, we divide the mass into the molecular weight Mw) of CH₄:
Mw(CH₄) = 12 g/mol C + (1 g/mol H x 4) = 16 g/mol
moles CH₄ = mass CH₄/Mw(CH₄)= 2.50 g/(16 g/mol) = 0.15625 mol CH₄
Now, we divide the heat released into the moles of CH₄ to obtain the enthalpy per mole of CH₄:
ΔHc = heat/mol CH₄ = 125 kJ/(0.15625 mol) = 800 kJ/mol
Therefore, the enthalpy of combustion of methane is -800 kJ/mol (the minus sign indicated that the heat is released).
Phenolphthalein is often used as an indicator in acid–base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions. Phenolphthalein is slightly soluble in water and usually is dissolved in alcohols for use in experiments.