Complete Question:
An object dropped from rest from the top of a tall building on Planet X falls a distance d(t)=13t^2 feet in the first t seconds. Find the average rate of change of distance with respect to time as t changes from t1=2 to t2=10. This rate is known as the average velocity, or speed.
The average velocity as t changes from 2 to 10 seconds is _______ feet/sec?
Answer:
![v = 156](https://tex.z-dn.net/?f=v%20%3D%20156)
Step-by-step explanation:
Given
![d(t)=13t^2](https://tex.z-dn.net/?f=d%28t%29%3D13t%5E2)
Time Interval: (a,b)
![a = 2](https://tex.z-dn.net/?f=a%20%3D%202)
![b = 10](https://tex.z-dn.net/?f=b%20%3D%2010)
Required
Determine the average rate of change (v)
This is calculated as thus:
![v = \frac{d(b) - d(a)}{b - a}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bd%28b%29%20-%20d%28a%29%7D%7Bb%20-%20a%7D)
Substitute values for b and a
![v = \frac{d(10) - d(2)}{10 - 2}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bd%2810%29%20-%20d%282%29%7D%7B10%20-%202%7D)
![v = \frac{d(10) - d(2)}{8}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bd%2810%29%20-%20d%282%29%7D%7B8%7D)
Calculate d(10): Substitute 10 for t
![d(t)=13t^2](https://tex.z-dn.net/?f=d%28t%29%3D13t%5E2)
![d(10) = 13 * 10^2](https://tex.z-dn.net/?f=d%2810%29%20%3D%2013%20%2A%2010%5E2)
![d(10) = 13 * 100](https://tex.z-dn.net/?f=d%2810%29%20%3D%2013%20%2A%20100)
![d(10) = 1300](https://tex.z-dn.net/?f=d%2810%29%20%3D%201300)
Calculate d(2): Substitute 2 for t
![d(t)=13t^2](https://tex.z-dn.net/?f=d%28t%29%3D13t%5E2)
![d(2) = 13 * 2^2](https://tex.z-dn.net/?f=d%282%29%20%3D%2013%20%2A%202%5E2)
![d(2) = 13 * 4](https://tex.z-dn.net/?f=d%282%29%20%3D%2013%20%2A%204)
![d(2) = 52](https://tex.z-dn.net/?f=d%282%29%20%3D%2052)
The equation
becomes
![v = \frac{1300 - 52}{8}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7B1300%20-%2052%7D%7B8%7D)
![v = \frac{1248}{8}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7B1248%7D%7B8%7D)
![v = 156](https://tex.z-dn.net/?f=v%20%3D%20156)
Hence, the average rate of change is 156ft/s