X= 8/3, y= 17/3
Double check to see if it’s the right answer
Answer:
Solving for the value of x in the inequality will give us an answer of x > 7. Thus, the side of the congruent side of the triangle should be greater than 7 feet.
The answer to this would be 40 degrees.
7. 4x+y=8 ----- first equation
(+)
-3x-y=0
_______
x = 8 ---- second equation
substitude second equation into first equation
4(8) + y = 8
32 + y = 8
y = 24
8. 2x+5y=20 ---- first equation
(-)
2x-5y =3
________
10y = 17
y = 17/10 ---- second equation
substitude second equation into first equation
2x + 5(17/10) = 20
2x + 17/2 = 20
4x + 17 = 40
4x = 23
x = 23/4
9. 3x+2y=-10 (×2) ---- first equation
2x-5y=3 (×3)
6x + 4y = - 20
(-)
6x - 15y = 9
___________
19y = - 29
y = - 29/19 ---- second equation
substitude second equation into first equation
3x + 2(-29/19) = - 10
3x - 58/19 = - 10
3x = - 132/19
x = - 44/19
Answer:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
To add two matrices you just need to add the corresponding entries together. In this case, we have that:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right]=\left[\begin{array}{ccc}4-8&19+7&-5 + 0\\7-1&0+17&-14+6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-8%2619%2B7%26-5%20%2B%200%5C%5C7-1%260%2B17%26-14%2B6%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Then, we conclude that the sume of the two matrices is:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)