Answer:
Race completed in 48 minutes.
Step-by-step explanation:
Let the speed of Max on hoverboard is = x
Then as per question speed of Victoria on hoverboard = 3x
Now it has been given in the question that speed of Victoria on foot is 1/3 of the speed of Max on hoverboard that will be = x/3
Now we will form the equation.
As we know the formula speed = distance/time
Let the time taken by both to complete the race be t minutes.
Distance covered by Victoria in 12 minutes + Distance covered by Victoria on foot = distance covered by Max on hoverboard
Then the equation will be
12(3x)+(1/3)x(t-12)=xt






So 48 minutes it took to complete the race.
Answer:
6
Step-by-step explanation:
48 tiles divided by 8 ft is 6 ft
Answer: The dimensions are: " 1.5 mi. × ³⁄₁₀ mi. " .
_______________________________________________
{ length = 1.5 mi. ; width = ³⁄₁₀ mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:
A = L * w ;
in which: A = Area = (9/20) mi.² ,
L = Length = ?
w = width = (1/5)*L = (L/5) = ?
________________________________________
A = L * w ; we want to find the dimensions; that is, the values for
"Length (L)" and "width (w)" ;
_______________________________________
Plug in our given values:
_______________________________________
(9/20) mi.² = L * (L/5) ; in which: "w = L/5" ;
→ (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
↔ L² / 5 = 9/20 ;
→ (L² * ? / 5 * ?) = 9/20 ?
→ 20÷5 = 4 ; so; L² *4 = 9 ;
↔ 4 L² = 9 ;
→ Divide EACH side of the equation by "4" ;
→ (4 L²) / 4 = 9/4 ;
______________________________________
to get: → L² = 9/4 ;
Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________
→ ⁺√(L²) = ⁺√(9/4) ;
→ L = (√9) / (√4) ;
→ L = 3/2 ;
→ w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??
→ (3/2)mi. * (3/10)mi. = (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are:
Length = (3/2) mi. ; write as: 1.5 mi.
width = ³⁄₁₀ mi.
___________________________________________________
or; write as: " 1.5 mi. × ³⁄₁₀ mi. " .
___________________________________________________
Answer:
p = 2 ; q = 4
Step-by-step explanation:
Given tbe equation :
3p + 2q = 14 - - - (1)
10p + 6q = 44 - - -(2)
What is p and what is q
This is a simultaneous equation ; using elimination method :
Multiply (1) by 6 and (2) by 2
18p + 12q = 84 - - - - (3)
20p + 12q = 88 - - - (4)
Subtract (3) and (4)
-2p = - 4
p = 4/2
p = 2
Put p = 2 in (1)
3p + 2q = 14
3(2) + 2q = 14
6 + 2q = 14
2q = 14 - 6
2q = 8
q = 8/2
q = 4
p = 2 ; q = 4
Answer:
550 miles
Step-by-step explanation:

