To develop this problem we will apply the concepts related to the Electromagnetic Force. The magnetic force can be defined as the product between the free space constant, the current (of each cable) and the length of these, on the perimeter of the cross section, in this case circular. Mathematically it can be expressed as,

Here,
= Permeability free space
I = Current
L = Length
d= Distance between them
Our values are,




Rearranging the previous equation to find the current,





Therefore the current in the rods is 210.6A
Answer: 6.45 s
Explanation:
We have the following equation:
(1)
Where:
is the height when the rock hits the ground
the height at the edge of the cilff
the initial velocity
acceleration due gravity
time
(2)
Rearranging the equation:
(3)
At this point we have a quadratic equation of the form
, and we have to use the quadratic formula if we want to find
:
(4)
Where
,
, 
Substituting the known values and choosing the positive result of the equation:
(5)
This is the time it takes to the rock to hit the ground
It uses arrows to show what way the wind is going
Answer: Smaller than ; larger than
Explanation:
When the elevator is moving in the upward direction, then the force acting on it is negative in nature because of
N= mg +ma, (g is gravity and a is acceleration)
here ma is negative so the N= mg-ma
Hence, it feels smaller than its original weight.
When the elevator is moving downward , then the force acting will be positive in nature
N= mg+ma,
here ma will be positive so it feels larger the original weight of passenger.
Answer:
Explanation:
Let density of water be ρ .
During flow , volume of water flowing per second is constant
loss of P. E per unit volume = ρ gh , 83.5 % is lost
Gain of K E per unit volume = 1/2 ρ v²
83.5 % of mgh = ρ 1/2 ρ v²
1/2 ρ v² = .835 x 9.8
v² = 2 x .835 x 9.8
= 16.366
v = 4.04 m /s