The ratio of bananas to apples is 2:5
Answer
x = 1
Explanation:
Given the following equation
![\begin{gathered} (2x+2)^{\frac{1}{2}}=\text{ -2} \\ \text{According to the law of indicies} \\ x^{\frac{1}{2}}\text{ = }\sqrt[]{x} \\ (2x+2)^{\frac{1}{2}}\text{ = }\sqrt[]{(2x\text{ + 2)}} \\ \text{Step 1: Take the square of both sides} \\ \sqrt[]{(2x\text{ + 2) }}\text{ = -2} \\ \sqrt[]{(2x+2)^2}=-2^2 \\ 2x\text{ + 2 = 4} \\ \text{Collect the like terms} \\ 2x\text{ = 4 - 2} \\ 2x\text{ = 2} \\ \text{Divide both sides by 2} \\ \frac{2x}{2}\text{ = }\frac{2}{2} \\ x\text{ = 1} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%282x%2B2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Ctext%7B%20-2%7D%20%5C%5C%20%5Ctext%7BAccording%20to%20the%20law%20of%20indicies%7D%20%5C%5C%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7Bx%7D%20%5C%5C%20%282x%2B2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B%282x%5Ctext%7B%20%2B%202%29%7D%7D%20%5C%5C%20%5Ctext%7BStep%201%3A%20Take%20the%20square%20of%20both%20sides%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%282x%5Ctext%7B%20%2B%202%29%20%7D%7D%5Ctext%7B%20%3D%20-2%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%282x%2B2%29%5E2%7D%3D-2%5E2%20%5C%5C%202x%5Ctext%7B%20%2B%202%20%3D%204%7D%20%5C%5C%20%5Ctext%7BCollect%20the%20like%20terms%7D%20%5C%5C%202x%5Ctext%7B%20%3D%204%20-%202%7D%20%5C%5C%202x%5Ctext%7B%20%3D%202%7D%20%5C%5C%20%5Ctext%7BDivide%20both%20sides%20by%202%7D%20%5C%5C%20%5Cfrac%7B2x%7D%7B2%7D%5Ctext%7B%20%3D%20%7D%5Cfrac%7B2%7D%7B2%7D%20%5C%5C%20x%5Ctext%7B%20%3D%201%7D%20%5Cend%7Bgathered%7D)
Therefore, x = 1
Answer:
f
Step-by-step explanation:
Answer:
go to the website slader.com
Step-by-step explanation:
it has most textbooks on it and the answers to textbook questions
The true statement about this function which models the given situation is: A. the function is linear and is growing by equal differences over equal intervals.
<h3>What is a
linear function?</h3>
A linear function can be defined as a type of function whose equation is graphically represented by a straight line on the cartesian coordinate.
By critically observing the graph which models the given situation, we can infer and logically deduce that the true statement about this function is that the function is linear and is growing by equal differences over equal intervals.
Read more on linear function here: brainly.com/question/6978079
#SPJ1