The large number of areas covered by the chemical energetics can be explained by the different forms in which chemical energy can be released: heat and combustion work, electrical energy in electrochemistry, radiant energy in chemiluminescent systems.
The chemical energy provided by a reaction reflects the energy balance associated with the electronic modifications suffered by the species involved.
From an energy point of view, a chemical reaction between molecules can be schematized in two stages. The first requires a supply of energy and corresponds to the rupture of the bonds of the reactant molecules with release of the atoms which constitute them.
The second releases energy and concerns the creation, by recombination of these atoms, of new bonds entering the structure of the reaction molecules.
As a general rule, the energy released in the second stage is greater than the first. We are talking about exothermic reaction. The difference between these two energies (reaction enthalpy) measures the amount of chemical energy transferred to the external environment.
It is conceivable that this quantity translates, not only the number, but also the strength of the connections involved.
Answer:
Phytoplankton use carbon dioxide and produce oxygen during photosynthesis; phytoplankton, fish, and seals use oxygen and produce carbon dioxide during respiration. Which can provide the most energy in an ecosystem
Explanation:
Ill be sure to do that
#savage
I think the correct answer from the choices listed above is the first option. The circumstances that this condition would manifest would be if the child is a male and its mother has the recessive allele. X-linked recessive inheritance<span> is a mode of </span>inheritance<span> in which a </span>mutation<span> in a </span>gene<span> on the </span>X chromosome<span> causes the phenotype to be expressed in males </span><span>and in females who are homozygous for the gene mutation</span>