<h3>
Answer:</h3>
1170.43 m³
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial pressure, P1 as 808 kPa
- Initial temperature, T1 as 585 K
- Initial volume, V1 as 295 m³
- New pressure, P2 as 102 kPa
- New temperature, T2 as 293 K
We are required to find the new volume;
- We are going to use the combined gas law
- According to the gas law;

- Thus, rearranging the formula;



Therefore, the volume is 1170.43 m³
Answer:
3Sn(s04)2
Explanation:bc it cant be anything else
On temperature 25°C (298,15K) and pressure of 1 atm each gas has same amount of substance:
n(gas) = p·V ÷ R·T = 1 atm · 20L ÷ <span>0,082 L</span>·<span>atm/K</span>·<span>mol </span>· 298,15 K
n(gas) = 0,82 mol.
1) m(He) = 0,82 mol · 4 g/mol = 3,28 g.
d(He) = 10 g + 3,28 g ÷ 20 L = 0,664 g/L.
2) m(Ne) = 0,82 mol · 20,17 g/mol = 16,53 g.
d(Ne) = 26,53 g ÷ 20 L = 1,27 g/L.
3) m(CO) = 0,82 mol ·28 g/mol = 22,96 g.
d(CO) = 32,96 g ÷ 20L = 1,648 g/L.
4) m(NO) = 0,82 mol ·30 g/mol = 24,6 g.
d(NO) = 34,6 g ÷ 20 L = 1,73 g/L.
When Ag+ is combined with Na2CO3, the substances formed are Ag2CO3 and Na+. In this case, Ag performs single substitution over the element Na to form another set of substances. There are other types of reactions like double displacement, decomposition, etc.
but where Is the volume in order for us to determine the concentration. since we have moles in H+ ions
then you can say
concentration = M*1000/V