Density = Mass divided by Volume
So what you do is 80.00 ÷ 0.99755.
Which I believe would equal <span>80.1964813794
Hope this helps! </span>
Answer:
Part A: 2N₂O(g) ⇄ 2N₂(g) + O₂(g)
Part B: -r = K*[N₂O]²
Part C: K= k1*k2
Explanation:
Part A
To do the balance chemical question for the overall chemical reaction, we must sum the reaction of the steps, eliminating the intermediaries, which are the compounds that have the same amount both at reactants and products (bolded).
N₂O(g) ⇄ N₂(g) + O(g)
N₂O(g) + O(g) ⇄ N₂(g) + O₂(g)
---------------------------------------------
2N₂O(g) + O(g) ⇄ 2N₂(g) + O(g) + O₂(g)
2N₂O(g) ⇄ 2N₂(g) + O₂(g)
Part B
The velocity of the reaction (r) can be calculated based on the reactants or based on the products. Let's do it based on the disappearing of the reactant. Because it is disappearing, the variation at its concentration must be negative, so the rate will be negative.
Let's suppose its an elementary reaction, so, the concentration of the reactant must be elevated by its coefficient. And let's call the overall rate constant as K:
-r = K*[N₂O]²
Part C
Because the steps were summed, and the reactions were not multiplied by a constant or inverted, the constant K is just the multiplication of the constants of the steps:
K= k1*k2
The reactive properties or chemical behavior of an atom is mostly dependant on the number of electrons in the outer shell
Answer: A.
Explanation: The patient's stress and anxiety would be eliminated. O High levels of radiation can diffuse through the patient's skin. Social contact would increase the effect of the radiation treatment.