To remove one electron from singly ionized helium, will require approximately 54.4 eV or 8.72 1020 J of energy.
The amount of energy required by an isolated, gaseous molecule in the electronic state of the ground to absorb in order to discharge an electron and produce a cation has been known as the ionization energy. The amount of energy required for every atom in a mole to drop one electron is most often given as kJ/mol.
Anything that causes electrically neutral atoms and molecules to gain or lose electrons in order to become electrically charged atoms as well as molecules .
Therefore, the "To remove one electron from singly ionized helium, will require approximately 54.4 eV or 8.72 1020 J of energy."
To know more about electron
brainly.com/question/14135172
#SPJ4
Answer:
motion is the phenomenon in which an object changes its position over time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and time.
Explanation:
If the sun was not there the earth would travel in a straight line
Answer:
The further an electron is from the nucleus. the greater its energy level.
Explanation:
When an electron is close to the nucleus, it is at as low an energy level as it can get.
We must put energy into an electron to pull it away from the attraction of a nucleus.
So, electrons that are further from the nucleus are at higher energy levels.
Answer:
-252.5 kJ/mol = ΔH H2O(g)
Explanation:
ΔH Fe2O3 = -825.5kJ/mol
ΔH H2 = 0kJ/mol
ΔH Fe = 0kJ/mol
Based on Hess's law, ΔH of a reaction is the sum of ΔH of products - ΔH of reactants. For the reaction:
Fe2O3(s) + 3 H2(g) →2Fe(s) + 3 H2O(g)
ΔHr = 67.9kJ/mol = 3*ΔH H2O + 2*ΔHFe - (ΔH Fe2O3 + 3*Δ H2)
67.9kJ/mol = 3*ΔH H2O + 2*0kJ/mol - (ΔH -825.5kJ/mol + 3*Δ H2)
67.9 = 3*ΔH H2O(g) + 825.5kJ/mol
-757.6kJ/mol = 3*ΔH H2O(g)
<h3>-252.5 kJ/mol = ΔH H2O(g)</h3>