Answer:
760 mm of Hg
Explanation:
If the gases A , B and C are non reacting , then according to <u>Dalton's </u><u>Law </u><u>of</u><u> </u><u>Partial </u><u>Pressure</u> the total pressure exerted is equal to sum of individual partial pressure of the gases .
If there are n , number of gases then ,
Here ,
- Partial pressure of Gas A = 400mm of Hg
- Partial pressure of Gas B = 220 mm of Hg
- Partial pressure of Gas C = 140mm of Hg
Hence the total pressure exerted is ,
Substitute ,

Add ,

<u>Hence</u><u> the</u><u> </u><u>total</u><u> pressure</u><u> exerted</u><u> by</u><u> the</u><u> </u><u>gases </u><u>is </u><u>7</u><u>6</u><u>0</u><u> </u><u>mm </u><u>of </u><u>Hg</u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>.</em>
CBr4 is larger than CH4, so it has a higher London dispersion, A type of Intermolecular force. Higher force means longer time to
bring the substance to boil,Meaning a higher boil point
Explanation:
The driving force behind plate tectonics is convection in the mantle. Hot material near the Earth's core rises, and colder mantle rock sinks.
Explanation:
A. Hydrogen bonding is present in CS2 but not in CO2.
B. CS2 has greater dipole moment than CO2 and thus the dipole-dipole forces in CS2 are stronger.
C. CS2 partly dissociates to form ions and CO2 does not. Therefore, ion-dipole interactions are present in CS2 but not in CO2.
D. The dispersion forces are greater in CS2 than in CO2.
<u><em>PLS MARK BRAINLIEST :D</em></u>
Cylinder D
temperature is the measurement of average kinetic energy of a sunstance. since cylinder D has the highest average velocity, it has the highest average kinetic energy among the 4 cylinders, thus cylinder D is the hottest.