1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
9

Find the measure of a 3. ts 43 90° << 43 = [?]

Mathematics
2 answers:
Natalka [10]3 years ago
6 0

THEOREM:

<u>Same Side Interior Angles Theorem</u>:– If two parallel lines are cut by a transversal, then the same side interior angles are supplementary.

ANSWER:

By same side interior angles theorem,

∠3 + 90° = 180°

∠3 = 180° - 90°

∠3 = 90°.

Karolina [17]3 years ago
3 0

The correct answer is 90

You might be interested in
Please Help Me . Thank You
sergij07 [2.7K]
The answer is 60... if one in. is 75... 0.8 obviously is not 75.
7 0
3 years ago
What is the correct factorization of
Angelina_Jolie [31]

Answer:

<em><u>(x</u></em><em><u>-</u></em><em><u>1)(x</u></em><em><u>+</u></em><em><u>6)</u></em>

Step-by-step explanation:

3 0
3 years ago
If f(x)<br> 2x – 1 and g(x)<br> =<br> x2 - 2, find [g - fl(x)
xxMikexx [17]

Answer:

f(x) = 2x - 1

g(x) = x² - 2

[ g - f] (x) = x² - 2 - 2x + 1

= x² - 2x - 1

Hope this helps.

5 0
3 years ago
A new law requires that 12% of an individual's income be invested in the stock market. Your accounts show that you need to put $
kozerog [31]
If you need to put $420 this year and the law requires 12% of the income to be invested in the stock market, then you earned:
$240/0.12 = $3500 this year

So, you earned a total of $3,500 this with 12% of it invested in the stock market which is 12% of your total earnings leaving you with just $3,080
4 0
3 years ago
Use the limit definition of the derivative to find the slope of the tangent line to the curve
ale4655 [162]

Answer:

\displaystyle f'(4) = 63

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Expand by FOIL (First Outside Inside Last)
  • Factoring
  • Function Notation
  • Terms/Coefficients

<u>Calculus</u>

Derivatives

The definition of a derivative is the slope of the tangent line.

Limit Definition of a Derivative: \displaystyle f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}  

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 7x² + 7x + 3

Slope of tangent line at x = 4

<u>Step 2: Differentiate</u>

  1. Substitute in function [Limit Definition of a Derivative]:                              \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x + h)^2 + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  2. [Limit - Fraction] Expand [FOIL]:                                                                    \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x^2 + 2xh + h^2) + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  3. [Limit - Fraction] Distribute:                                                                            \displaystyle f'(x)= \lim_{h \to 0} \frac{[7x^2 + 14xh + 7h^2 + 7x + 7h + 3] - 7x^2 - 7x - 3}{h}
  4. [Limit - Fraction] Combine like terms (x²):                                                     \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7x + 7h + 3 - 7x - 3}{h}
  5. [Limit - Fraction] Combine like terms (x):                                                      \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h + 3 - 3}{h}
  6. [Limit - Fraction] Combine like terms:                                                           \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h}{h}
  7. [Limit - Fraction] Factor:                                                                                 \displaystyle f'(x)= \lim_{h \to 0} \frac{h(14x + 7h + 7)}{h}
  8. [Limit - Fraction] Simplify:                                                                               \displaystyle f'(x)= \lim_{h \to 0} 14x + 7h + 7
  9. [Limit] Evaluate:                                                                                                 \displaystyle f'(x) = 14x + 7

<u>Step 3: Find Slope</u>

  1. Substitute in <em>x</em>:                                                                                                \displaystyle f'(4) = 14(4) + 7
  2. Multiply:                                                                                                           \displaystyle f'(4) = 56 + 7
  3. Add:                                                                                                                  \displaystyle f'(4) = 63

This means that the slope of the tangent line at x = 4 is equal to 63.

Hope this helps!

Topic: Calculus AB/1

Unit: Chapter 2 - Definition of a Derivative

(College Calculus 10e)

3 0
3 years ago
Other questions:
  • What is 2/5 + 7/15 ?
    8·1 answer
  • 10, 30, 90 continue the pattern
    13·2 answers
  • Which phrase could be represented by this expression? A. seven less than one-fourth of a number B. four times the difference of
    7·1 answer
  • Which best describes how to add 9.73 and 21.6?
    8·1 answer
  • Single-sample t test and paid days off: The number of paid days off (e.g., vacation, sick leave) taken by eight employees at a s
    11·1 answer
  • What’s the area of a circle
    12·2 answers
  • I need help solving this problem, please respond as fast as you can.<br><br> -7 – 3x = 1x + 4(2 + x)
    11·1 answer
  • What is the slope function y=8x+6
    9·1 answer
  • Which ordered pair is the solution of the system graphed?
    15·1 answer
  • PLZZZZZZZZZZZZ help asap no links please
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!