I: 12x-5y=0
II:(x+12)^2+(y-5)^2=169
with I:
12x=5y
x=(5/12)y
-> substitute x in II:
((5/12)y+12)^2+(y-5)^2=169
(25/144)y^2+10y+144+y^2-10y+25=169
(25/144)y^2+y^2+10y-10y+144+25=169
(25/144)y^2+y^2+144+25=169
(25/144)y^2+y^2+169=169
(25/144)y^2+y^2=0
y^2=0
y=0
insert into I:
12x=0
x=0
-> only intersection is at (0,0) = option B
Answer:
7-5x
Step-by-step explanation:
Answer:
The equation in the slope-intercept form will be:
y = 1/4x - 7
Step-by-step explanation:
Given the points




We know that the slope-intercept of line equation is

where m is the slope and b is the y-intercept
substituting m = 1/4 and the point (-4, -8) to find the y-intercept 'b'
y = mx+b
-8 = 1/4(-4)+b
-8 = -1 + b
b = -8+1
b = -7
so the y-intercept = b = -7
substituting m = 1/4 and b = -7 in the slope-intercept form of line equation
y = mx+b
y = 1/4x + (-7)
y = 1/4x - 7
Thus, the the equation in slope-intercept form will be:
y = 1/4x - 7
Answer:
<h3>
D. (2, 7)</h3>
Step-by-step explanation:
The solution is the coordinates of the point (p,n) of intercept of lines described by given equations.
We are going to need more contex to awnser this