Answer:
I'm pretty sure the answer is A.
Explanation:
RNA is transcribed in the nucleus; after processing, it is transported to the cytoplasm and translated by the ribosome.
Come up with a different one.. or see what do you did wrong in the first one ( I think .)
If a person uses up his or her reserve supply of glycogen and still does not eat, sugar comes from the muscle.
Although only liver glycogen directly contributes to the release of glucose into circulation, maintaining a healthy blood glucose concentration is one of the glycogen's key functions. Since skeletal muscles lack glucose 6-phosphatase, they are unable to release glucose, and muscle glycogen primarily serves as a local energy source for activity rather than a source of fuel to keep blood glucose levels stable while fasting.
In fact, the breakdown of muscle glycogen into lactate allows for its delivery to the liver, where it participates in the maintenance of euglycemia through the process of gluconeogenesis (Cori cycle).
To learn more about glycogen click here
brainly.com/question/13082214
#SPJ4
Answer:
the answer is d ig........
The answer is stabilizing selection.
<span>Sickle-cell anemia is a recessive disorder caused by the presence of two recessive alleles "s", so genotype is "ss". This disorder is characterized by sickle hemoglobin. In an area with malaria, heterozygous individuals "Ss" (with one dominant allele and one recessive allele) have an advantage. These individuals will have both normal and sickle hemoglobin. But pathogen that causes malaria affect only normal hemoglobin, so heterozygous individuals will have half of the hemoglobin resistant to the pathogen and those individuals are resistant to malaria.</span>
Stabilizing selection favors heterozygotes Ss, disruptive selection favors dominant (SS) and recessive (ss) homozygotes, while directional selection favors dominant (SS) or recessive (ss) homozygote. Since in this example, people with genotype Ss (heterozygotes) are in advantage, then this is an example of stabilizing selection.