Answer:

Step-by-step explanation:
For many of these identities, it is helpful to convert everything to sine and cosine, see what cancels, and then work to build out to something. If you have options that you're building toward, aim toward one of them.
and 
Recall the following reciprocal identity:

So, the original expression can be written in terms of only sines and cosines:





Working toward one of the answers provided, this is the tangent function.
The one caveat is that the original expression also was undefined for values of beta that caused the sine function to be zero, whereas this simplified function is only undefined for values of beta where the cosine is equal to zero. However, the questions states that we are only considering values for which the original expression is defined, so, excluding those values of beta, the original expression is equivalent to
.
Answer:
yes that is correct. Do you have a question about it?
It would be 404%
Hope this helps!
Answer:
m∠1=80°, m∠2=35°, m∠3=33°
Step-by-step explanation:
we know that
The sum of the interior angles of a triangle must be equal to 180 degrees
step 1
Find the measure of angle 1
In the triangle that contain the interior angle 1
∠1+69°+31°=180°
∠1+100°=180°
∠1=180°-100°=80°
step 2
Find the measure of angle 2
In the small triangle that contain the interior angle 2
∠2+45°+(180°-∠1)=180°
substitute the value of angle 1
∠2+45°+(180°-80°)=180°
∠2+45°+(100°)=180°
∠2+145°=180°
∠2=180°-145°=35°
step 3
Find the measure of angle 3
In the larger triangle that contain the interior angle 3
(∠3+31°)+69°+47°=180°
∠3+147°=180°
∠3=180°-147°=33°
Answer:
The probably genotype of individual #4 if 'Aa' and individual #6 is 'aa'.
Step-by-step explanation:
In a non sex-linked, dominant trait where both parents carry and show the trait and produce children that both have and don't have the trait, they would each have a genotype of 'Aa' which would produce a likelihood of 75% of children that carry the dominant traint and 25% that don't. Since the child of #1 and #2, #5, does not exhibit the trait, nor does the significant other (#6), then they both must have the 'aa' genotype. However, since #4 displays the dominant trait received from the parents, it is more likely they would have the 'Aa' genotype as by the punnet square of 'Aa' x 'Aa', 50% of their children would have the 'Aa' phenotype.