Answer:
V = 26.95 cm³
Explanation:
Density is given by the formula :
ρ = m÷V
Density = mass ÷ Volume
Given both density and mass we rearrange, substitute and solve for Volume :
Rearranging the equation to make Volume the subject :
ρ = m÷V
ρV = m
V = m÷ ρ
Now substitute :
V = 45 ÷ 1.67
V = 26.9461077844
Take 2 decimal places as the density is 2 decimal places :
V = 26.95
Units will be cm³ as it is volume
Hope this helped and have a good day
Answer:
Given values of Planck Constant are equivalent in English system and metric system.
Explanation:
Value of Planck's constant is given in English system as 4.14 x 10⁻¹⁵eV s.
Converting this in to metric system .
We have 1 eV = 1.6 x 10⁻¹⁹ J
Converting
4.14 x 10⁻¹⁵eV s = 4.14 x 10⁻¹⁵x 1.6 x 10⁻¹⁹ = 6.63 x 10⁻³⁴ Joule s
So Given values of Planck Constant are equivalent in English system and metric system.
Answer:
M=28.88 gm/mol
Explanation:
Given that
T= 95 K
P= 1.6 atm
V= 4.87 L
m = 28.6 g
R=0.08206L atm .mol .K
We know that gas equation for ideal gas
P V = n R T
P=Pressure , V=Volume ,n=Moles,T= Temperature ,R=gas constant
Now by putting the values
P V = n R T
1.6 x 4.87 = n x 0.08206 x 95
n=0.99 moles
We know that number of moles given as

M=Molar mass


M=28.88 gm/mol
Answer: Kinetic Molecular Theory claims that gas particles are in continuous motion and completely demonstrate elastic collisions. Kinetic Molecular Theory can be used to describe the rules of both Charles and Boyle. A series of gas particles only has an average kinetic energy that is directly proportional to absolute temperature.
Under normal lighting conditions, most diamonds appear to be colorless the naked eye. Many consumers think that all diamonds are colorless, however, in reality, they come in a wide range of colors. Actualcolor differences are very subtle.