Answer:

Explanation:
q = Charge
r = Distance




The electric field is given by

The electric field at the aircraft is 
A = Delta v/Delta t
Delta v = 25 - 0 = 25
Delta t = 30
25/30 = 5/6 = 1.66 repeating
Answer:
The new separation distance between adjacent bright fringes will be <u>4 mm</u>
Explanation:
Since, the distance between adjacent bright fringes is given by the formula:
Δx₁ = λL/d = 2 mm -------- eqn (1)
where,
Δx = Distance between adjacent bright fringes
λ = wavelength of light = constant for both cases
L = Distance between the slits and the screen
d = slit separation
Now, for the second case:
Slit Separation = d/2
Therefore,
Δx₂ = λL/(d/2)
Δx₂ = 2(λL/d)
using eqn (1), we get:
Δx₂ = 2 Δx₁
Δx₂ = 2(2 mm)
<u>Δx₂ = 4 mm</u>
Answer:
A)Object 1 has the greater magnitude of its momentum.
B)The objects 2 have the greater kinetic energy.
Explanation:
For object 1 :
v₁ = v ,m₁ = 2 m
For object 2 :
,m₂=m
We know that linear momentum given as
P = M V
M=Mass , V=Velocity
For object 1 :
P₁ =m₁ v₁
P₁ =2 m v
For object 2


We can say that object 1 have more momentum.
The kinetic energy






Therefore both the object 2 have higher kinetic energy.
Answer:
The first person to "measure gravity" is sir Issac newton