Answer:
The electric field at x = 3L is 166.67 N/C
Solution:
As per the question:
The uniform line charge density on the x-axis for x, 0< x< L is 
Total charge, Q = 7 nC = 
At x = 2L,
Electric field, 
Coulomb constant, K = 
Now, we know that:

Also the line charge density:

Thus
Q = 
Now, for small element:


Integrating both the sides from x = L to x = 2L

![\vec{E_{2L}} = K\lambda[\frac{- 1}{x}]_{L}^{2L}] = K\frac{Q}{L}[frac{1}{2L}]](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7BL%7D%5E%7B2L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D)
![\vec{E_{2L}} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{2L}] = \frac{63}{L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7BL%5E%7B2%7D%7D)
Similarly,
For the field in between the range 2L< x < 3L:

![\vec{E} = K\lambda[\frac{- 1}{x}]_{2L}^{3L}] = K\frac{Q}{L}[frac{1}{6L}]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7B2L%7D%5E%7B3L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D)
![\vec{E} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{6L}] = \frac{63}{6L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7B6L%5E%7B2%7D%7D)
Now,
If at x = 2L,

Then at x = 3L:

Answer:
, Nervous tissue is composed of two types of cells, neurons and glial cells. Neurons are the primary type of cell that most anyone associates with the nervous system. They are responsible for the computation and communication that the nervous system provides.
Answer:
mass: The quantity of matter which a body contains, irrespective of its bulk or volume. It is one of four fundamental properties of matter. It is measured in kilograms in the SI system of measurement.
Explanation:
<h2>please give brainliest plz follow </h2>
A. Because that is a digital balance
Answer:
A
Explanation:
Light has both wave and particle characteristics. It behaves as wave in examples such as Reflection, refraction, diffraction, interference. It behaves as a particle in photoelectric effect, compton's effect etc. Light is an example of wave-particle duality.