Answer:
The value is 
Explanation:
From the question we are told that
The emitted frequency increased by 
Let assume that the initial value of the emitted frequency is

Hence new frequency will be 
Generally from Doppler shift equation we have that
![f_1 = [\frac{ v \pm v_o}{v \pm + v_s } ] f](https://tex.z-dn.net/?f=f_1%20%3D%20%20%5B%5Cfrac%7B%20v%20%5Cpm%20v_o%7D%7Bv%20%5Cpm%20%2B%20v_s%20%7D%20%5D%20f)
Here v is the speed of sound with value 
is the velocity of the sound source which is
because it started from rest
is the observer velocity So
Generally given that the observer id moving towards the source, the Doppler frequency becomes
=>
=> 
By using the equation speed = distance/time we can solve for distance. The speed is 4 m/s and the time is 12 seconds. We need to rearrange the equation to Speed * Time = distance. 4(12) = 48; 48 = distance. The cliff is 48 meters high.
10 inches is the correct answer.
Answer:
Explanation:
Given
radius of Planet is equal to radius of Earth

Weight of body on Planet 
where m=mass of body

Weight of body on earth 

acceleration due to gravity is given by

where G=gravitational constant
M=mass of Planet
r=radius of planet
for earth 
for planet 
substituting these values in
and 


divide 1 and 2


