Answer:
h = 2.5 m
Explanation:
Given that,
Mass of a ball, m = 1.5 kg
Initial velocity of the ball, u = 7 m/s
We need to find the maximum height reached by the ball. Let it is be h. Using the conservation of energy to find it such that,

Put all the values,

So, it will reach to a height of 2.5 m.
Answer:
a) W = 6.75 J and b) v = 3.87 m / s
Explanation:
a) In the problem the force is nonlinear and they ask us for work, so we must use it's definition
W = ∫ F. dx
Bold indicates vectors. In a spring the force is applied in the direction of movement, whereby the scalar product is reduced to the ordinary product
W = ∫ F dx
We replace and integrate
W = ∫ (-60 x - 18 x²) dx
W = -60 x²/2 -18 x³/3
Let's evaluate between the integration limits, lower W = 0 for x = -0.50 m, to the upper limit W = W for x = 0 m
W = -30 [0- (-0.50) 2] -6 [0 - (- 0.50) 3]
W = 7.5 - 0.75
W = 6.75 J
b) Work is equal to the variation of kinetic energy
W = ΔK
W = ΔK = ½ m v² -0
v =√ 2W/m
v = √(2 6.75/ 0.90)
v = 3.87 m / s
Answer:
Hello, There! All your Answers Are Correct!
Explanation:
Hope this helps you!
If you Need Any Help Just Message Me Under this Answer!

<u><em>heyaaaaa</em></u>
<u><em>Momentum before Pb = momentum after Pa</em></u>
Pb = 75*6 - 100*8 = -350kgm/s = Pa = (75+100)V where V is the velocity of the combined mass of the two players after the collision.
<u><em>Velocity has magnitude (speed) and direction. V = -350/175 = -2m/s </em></u>
So the two players are moving at 2m/s in the direction the 100kg player was moving before the collision.
<em><u>I arbitrarily chose the direction of the smaller player as positive so the opposite direction (of the larger player) had to be negative. </u></em>
hope it helpssss!!!!!!
Answer:
obseverving, measuring, testing, and explaining their ideas