Acceleration = (Vf - Vi)/t
Since Vf= 60m/s
Vi= 15m/s
T= 15s
=> a= (60m/s - 15m/s)/15s
= 3
So the acceleration is 3m/s^2
Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
<h2>
Answer: </h2><h2>
- Jupiter has orbiting moons.</h2><h2>
- The Sun has sunspots and rotates on its axis.</h2><h2>
- The Moon has mountains, valleys, and craters.</h2><h2>
- Venus goes through a full set of phases.</h2>
Explanation:
In 1609 Galileo built a telescope, with which he observed mountains and craters on the Moon, discovered Jupiter’s major satellites and the next year he published these discoveries in his book <em>The Sidereal Messenger</em>.
In addition, Galileo observed that Venus presented phases (such as those of the moon) together with a variation in size; observations that are only compatible with the fact that Venus rotates around the Sun and not around Earth. This is because <u>Venus presented its smaller size when it was in full phase and the largest size when it was in the new one, when it is between the Sun and the Earth. </u>
<u />
On the other hand, <u>although Galileo was not the first to observe sunspots</u>, he gave the correct explanation of their existence, which supported the idea that planets revolve around the Sun.
These observations and discoveries were presented by Galileo to the Catholic Church (which supported the geocentric theory at that time) as a proof that completely refuted Ptolemy's geocentric system and affirmed Copernicus' heliocentric theory.
If the distance to a point source of sound is doubled, by a multiplicative factor of 4, the intensity changes.
Intensity of sound is the sound which is perpendicular to sound wave propogation per unit area. It is dependent on the Surface of source sound.
Intensity is the Power per unit area. Its SI unit is Watt/m².
As we move away from a source of sound, the sound starts to diminish. This is due to the decreasing sound intensity with distance.
It can also be understood by the fact that on increasing distance, the Power radiated by the source spreads over a larger area. Hence, the Intensity decreases gradually.
Since, Intensity is proportional to the square of the distance.
Hence, on doubling the distance, Intensity reduces to one fourth of the initial intensity or reduces by a multiplicative factor of 4.
Learn more about Intensity here, brainly.com/question/17583145
#SPJ4
The recoil velocity of cannon is (4) 5.0 m/s
Explanation:
We can find the recoil velocity from the law of conservation of momentum.
The recoil velocity is velocity of body 2 after release of body 1, i.e. velocity of cannon after release of clown.
Let v2 be cannon's velocity, v1 be clown's velocity given = 15 m/sec
m1 be clown's mass = 100kg and m2 be cannon's mass given = 500kg.
So recoil velocity of cannon v2 is given by,
v2 = -(m1÷m2)v1
v2 = -(100÷500)15
v2 = -5 m/s
where the minus sign refers to the direction of cannon's recoil velocity being opposite to that of clown.
Hence, option (4)5.0 m/s is the correct answer.